گروههای با دو درجه سرشت اکسترم و زیر گروههای نرمال آنها

thesis
abstract

در این رساله ما گروه های متناهی g را مطالعه می کنیم و یا اعمال شرطهایی تحت عنوان شرط های قوی و ضعیف روی این گروه ها، به بررسی خواص آن ها تحت این نوع شرط ها می پردازیم. به عنوان مثال نشان می دهیم که چنین گروه هایی رده یوچتوانی کوچکی دارند و هرگاه رده یوچتوانی آن ها بزرگتر از 2 می باشد. اندیس مرکزشان خواهد بود و در حالت هایی نیز ممکن است کران زوج برای مرتبه g داشته باشیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

گروههایی با تعداد متناهی از زیر گروههای نرمال ساز

بحث این پایان نامه درباره گروه هایی باn نرمالساز است. گوئیم گروهg ?n نرمالساز دارد (g ?nn) اگر وجود داشته باشد زیر گروه های kn...و 2g,k=k1 ازg (که لزومی ندارد از هم متمایز باشند)به طوری که ki ? g برایi? {2,…,n} و این که هر نرمالساز در g برابر یکی از k1,…,kn است. پس در بحث نرمالساز ها ما اصطلاحاتی از قبیل g? nn و g ? n3n2 وغیره را داریم. مثل گوییم g تعداد متناهی نرمالساز دارد ومی نویسیم g?...

15 صفحه اول

سرشت نمایی گروههای ( 3)2d2m+1 توسط طیف آنها

مجموعه مرتبه تمام عناصر یک گروه متناهی مانند g را طیف آن می نامیم. می گوییم گروه متناهی g توسط طیف خود قابل شناسایی است چنانچه برای هر گروه متناهی مانند h از برابری طیف h با طیف g یکریختی گروههای h و g نتیجه شود. در این پایان نامه نشان خواهیم داد گروههای ساده 2d(2^m+1,3)2 توسط طیف خود قابل شناسایی اند.

15 صفحه اول

od-سرشت نمایی گروههای متناهی

فرض کنیم g یک گروه متناهی باشد و نیز فرض کنیم p_1,p_2,..,p_k مام مقسوم علیه های اول مرتبه g باشند کهp_1<p_2<..<p_k.در این صورت گراف اول وابسته به گروه g عبارت است از یک گراف ساده که مجموعه راسهای آن عبارت است از {p_1,...,p_k} و دو راس متمایز p_i و p_j توسط یک یال به هم وصل می باشند اگر و تنها اگر g شامل عنصری از مرتبه p_ip_j باشد. درجه راس دلخواه p_i در این گراف را با( deg(p_i نشان می دهیم و ...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران - دانشکده علوم ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023